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ABSTRACT. Multiscale image registration techniques are presented for the reg-
istration of medical images using deformable registration models. The tech-
niques are particularly effective for registration problems in which one or both
of the images to be registered contains significant levels of noise. A brief
overview of existing deformable registration techniques is presented, and exper-
iments using B-spline free-form deformation registration models demonstrate
that ordinary deformable registration techniques fail to produce accurate re-
sults in the presence of significant levels of noise. The hierarchical multiscale
image decomposition described in E. Tadmor, S. Nezzar, and L. Vese’s, "A
multiscale image representation using hierarchical (BV, L2) decompositions”
(Multiscale Modeling and Simulations, 2 (2004): 4, pp. 554-579) is reviewed,
and multiscale image registration algorithms are developed based on the mul-
tiscale decomposition. Accurate registration of noisy images is achieved by
obtaining a hierarchical multiscale decomposition of the images and iteratively
registering the resulting components. This approach enables a successful reg-
istration of images that contain noise levels well beyond the level at which
ordinary deformable registration fails. Numerous image registration experi-
ments demonstrate the accuracy and efficiency of the multiscale registration
techniques.

1. Introduction. Image registration is the process of determining the optimal
spatial transformation that maps one image to another. Image registration is nec-
essary, for example, when images of the same object are taken at different times,
from different imaging devices, or from different perspectives. The two images to
be registered, called the fixed and moving images, are the input to the registration
algorithm, and the output is the optimal transformation that maps the moving im-
age to the fixed image. Ideally, the transformed moving image should be identical
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to the fixed image after registration. Applications of image registration include
radiation therapy, image-guided surgery, functional MRI analysis, and tumor de-
tection, as well as many nonmedical applications, such as computer vision, pattern
recognition, and remotely sensed data processing (see [4], [11], and the references
therein).

Image registration models are classified into two main categories according to
the transformation type: rigid and deformable. Rigid image registration models
assume that the transformation that maps the moving image to the fixed image
consists only of translations and rotations. While such models are sufficient for
many applications, it is clear that many registration problems, particularly in med-
ical imaging, are nonrigid. For example, respiratory motion causes nonrigid, or
deformable, distortion of the lungs, which in turn results in a distortion of other
organs. As another example, in neurosurgery brain tumors are typically identified
and diagnosed using magnetic resonance images (MRI), but stereotaxy technology
(the use of surgical instruments to reach specified points) generally uses computed
tomography (CT) images. Registration of these modalities allows the transfer of
coordinates of tumors from the MRI images to the CT images. However, if the tu-
mor changes its shape, size, or position, the surrounding brain matter will deform
in a nonrigid way. Additionally, during surgery the spatial coordinates of brain
structures deform significantly due to leakage of cerebrospinal fluid, administration
of anesthetic agents, hemmorhage, and retraction and resection of tissue. Image-
guided neurosurgery procedures thus require registration of pre- and intra-operative
images of the brain. See [15] and [19] for a discussion of the use of deformable reg-
istration in neurosurgery.

This paper is an extension of [13], in which we presented a multiscale approach
to rigid registration of medical images. In this paper, we apply the multiscale reg-
istration algorithm of [13] to deformable registration problems. While our method
can be used in conjunction with any registration model, we choose to focus on
B-spline free form deformation (FFD) models.

The structure of this paper is as follows. In Section 2, we provide a brief overview
of the image registration problem and discuss deformable registration techniques.
In Section 3, we present the problem of deformable image registration in the pres-
ence of noise, and illustrate the failure of standard FFD techniques when one or
both of the images to be registered contains significant levels of noise. In Section 4,
we review the hierarchical multiscale image decomposition of [18], and we present
two multiscale image registration algorithms based on the decomposition. In Sec-
tion 5, we demonstrate the accuracy and efficiency of our multiscale registration
techniques with several image registration experiments. Concluding remarks are
given in Section 6.

2. The registration problem. Given a fired and a moving image, the registra-
tion problem is the process of finding an optimal transformation that brings the
moving image into spatial alignment with the fixed image. While this problem is
easy to state, it is difficult to solve. The main source of difficulty is that the problem
is ill-posed, which means, for example, that the problem may not have a unique
solution. Additionally, the notion of optimality may vary for each application: for
example, some applications may require consideration only of rigid transformations,
while other applications require nonrigid transformations, while still other appli-
cations may require structural correspondence of anatomical structures. Finally,
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computation time and data storage constraints place limitations on the complexity
of models that can be used for describing the problem. For a detailed overview of
the image registration problem and various image registration techniques, see [12].

To formulate the registration problem mathematically, a two-dimensional gray-
scale image f is a mapping which assigns to every point z € ) C R? a gray value
f(z) (called the intensity value of the image at the point x). We will consider
images as elements of the space L?(R?). Any registration algorithm has three main
components:

1. the transformation model, which specifies the way in which the moving image

can be transformed to correspond to the fixed image;

the distance measure, or metric, used to compare the fixed and moving images;

3. the optimization process, that varies the parameters of the transformation
model in such a way that the transformation produced by the registration
process is optimal.

Given a distance measure D : (L?(R?))? — R and two images f(z), m(z) € L?(R?),
the solution ¢ of the registration problem is given by the following minimization
problem:

o

¢ = argmin D(f(z), m(¢($)))a (1)
P:R2—R2

where 1) is in the specified space of transformation models. Examples of commonly
used distance measures are mean squares, normalized correlation, and mutual in-
formation. Examples of typical transformation models are rigid, affine, polynomial,
and spline transformations [12]. To minimize D(f, m()), we must choose an op-
timizer which controls the minimization. The most commonly used optimization
techniques in image registration are gradient descent and regular step-gradient de-
scent methods. The implementation of the registration algorithm works in the
following way: at each iteration, the distance D between the two images is com-
puted. The specified transformation is then applied to the moving image, and the
distance between the images is recomputed. In theory, this process continues until
the distance is minimized (or maximized in certain cases), though in practice a
stopping criterion is applied.

Historically, image registration problems have been classified as either rigid or
nonrigid. In rigid registration problems, the moving image is assumed to differ from
the fixed image by translation and/or rotation. Thus rigid registration techniques
involve the determination of only a small number of parameters. In nonrigid, or
deformable rigid registration problems, the correspondence between the two images
involves a localized stretching of the images. As most of the organs in the human
body are not confined to rigid motion, much of the current work in medical image
registration is focused on the deformable case. Although deformable image regis-
tration clearly allows for more flexibility in the types of images and applications in
which it can be used, deformable registration techniques require significantly more
computation time than rigid registration techniques, and involve the determination
of a very large number of parameters. In this paper, we shall focus on the problem
of deformable registration in the presence of noise. This is an extension of our work
on rigid registration in the presence of noise, [13].

2.1. Deformable registration techniques. Spline-based FFD transformation
models are among the most common and important transformation models used
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in nonrigid registration problems [6] and [17]. Spline-based registration algorithms
use control points in the fixed image and a spline function to define transformations
away from these points. The two main spline models used in registration are thin-
plate splines and B-splines. Thin-plate splines have the property that each control
point has a global influence on the transformation. That is, if the position of one
control point is perturbed, then all other points in the image are perturbed as well.
This can be a disadvantage because it limits the ability of the transformation model
to model localized deformations. In addition, the computation time required for a
thin-plate spline-based registration algorithm increases significantly as the number
of control points increases. See [3] for an overview of thin-plate splines.

In contrast, B-splines are only defined in the neighborhood of each control point.
Thus perturbing the position of one control point affects the transformation only in
a neighborhood of that point. As a result, B-spline-based registration techniques are
more computationally efficient than thin-plate splines, especially for a large number
of control points. See [9] and [10] for a detailed description of FFD transformation
models. In this paper, we shall use deformable registration algorithms based on
B-spline FFD models. To define the spline-based deformation model, let Q =
{(z,y) | 0 <2z < X, 0 <y <Y} denote the domain of the image volume. Let
o denote a n, x n, mesh of control points c; ; with uniform spacing J. Then the
B-spline deformation model can be written as the 2-D tensor product of 1-D cubic
B-splines:

3 3
S, y) =Y > Bi(t) B (0)iyijrm, (2)

=0 m=0

where ¢ = |z/ng] — 1,5 = |y/n,] — 1, and B; represents the [-th basis of the
B-spline:

Bo(u) = < (1 —u)*,
Bi(u) = 6(3u3 —6u? +4),

1
Bs(u) = 6(—3u3 +3u+3u+1),

0 < u < 1. Changing the control point «; ; affects the transformation only in a
local neighborhood of «; ;. The control points o act as parameters of the B-spline
deformation model, and the degree of nonrigid deformation that can be modeled
depends on the resolution of the mesh of control points a. A large spacing of
control points allows modeling of global nonrigid deformation, while a small spacing
of control points allows modeling of local nonrigid deformations. Additionally,
the number of control points determines the number of degrees of freedom of the
transformation model, and hence, the computational complexity. For example, a
B-spline deformation model defined by a 10 x 10 grid of control points yields a
transformation with 2 x 10 x 10 = 200 degrees of freedom. Thus there is a tradeoff
between the model flexibility and its computational complexity.
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We note in passing that there are additional deformable registration techniques
such as elastic models [2], viscous fluid models [5], and finite element models [7].

ExXAMPLE.Registration of a deformed image.

Consider the midsagittal brain slice I and the deformed image S, shown in
Figure 1. The midsagittal brain slice I is taken from the Insight Segmentation
and Registration Toolkit (ITK) data repository [8]. The deformed image S is
obtained by applying a known B-spline deformation to the original image I. Since
the deformation transformation that maps the deformed image S to the original
image I and corresponding deformation field are known, we can effectively evaluate
the accuracy of various deformable registration methods by comparing the output
deformation fields with the known deformation field. For all registration simulations
presented in this paper, we use a B-spline FFD registration technique with a mean
squares image metric and a conjugate gradient descent algorithm. However, the
multiscale registration algorithms developed in this paper are independent of the
particular registration technique used to register the images.

Original Image

Deformed Image

FIGURE 1. The midsagittal brain slice I (shown on the left) and
the deformed image S (shown on the right).

Using an FFD registration model, the image S is successfully registered with the
image I.

In Figure 2, we compare the result of the registration process, namely the image
obtained upon applying the optimal deformable transformation determined by the
algorithm to the deformed image, with the original image I. Ideally, both figures
should be identical. Indeed, the images in Figure 2 demonstrate that the deformable
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registration algorithm recovers the deformation transformation. To quantitatively
evaluate the accuracy of the registration algorithm, we compare the correlation
coefficients between the images before and after registration. The correlation coef-
ficient p(A, B) between two images A and B is given by:

> 3 (Amn = A)(Binn — B)
p(A,B) = = = —»
E Z(Amn - A>2(an - B)2

where A and B are m x n two-dimensional images and A and B represent the mean
value of the elements of A and B, respectively. A correlation coefficient of zero in-
dicates a low degree of matching between the images, and a correlation coefficient
of 1 indicates exact similarity between the images. Correlation coefficients are a
commonly used representation of similarity between images for the evaluation of
deformable registration techniques [14]. Before registration, the correlation coef-
ficient between the original and deformed images is 0.74. After registration, the
correlation coefficient between the transformed moving and fixed images is 0.96.

Original Image

Registration Result

FIGURE 2. The result (shown on the right) upon registering the
deformed image S with the original image I (shown on the left).

In Figure 3, we display the exact deformation field corresponding to the defor-
mation transformation between the images I and S (on the left) and the defor-
mation field determined by the deformable registration algorithm, and note that
visually the two deformation fields are almost identical. The deformation field is
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a two-dimensional vector field that represents graphically the magnitude of the
deformation at each pixel in the image.

Exact Deformation Field Computed Deformation Field

il
- - D
0.
0.
0.
0.
0.
0.
0.

FIGURE 3. The exact deformation field corresponding to the de-
formation transformation between I and S (shown on the left) and
the deformation field produced by the registration algorithm upon
registering the deformed image S with the original image I (shown
on the right).

3. Deformation registration in the presence of noise. In this section, we
study the effect of noise on deformable registration. Again, we will consider the
brain midsagittal slice I and the deformed image S from Figure 1. Initially, we will
consider the registration problem in which only one of the two images (here, the
moving image) is noisy. In imaging, the term noise refers to random fluctuations
in intensity values that occur during image capture, transmission, or processing,
and that may distort the information given by the image. Image noise is not part
of the ideal signal and may be caused by a wide range of sources, such as detector
sensitivity, environmental radiation, transmission errors, discretization effects, etc.
In this paper, we will study the problem of image registration in the presence of
high levels of speckle noise (though we have conducted experiments demonstrating
that we obtain similar results for other types of noise). See, for example, our results
for rigid registration [13].

Speckle noise, or multiplicative noise, is a type of noise that occurs commonly in
medical imaging. In particular, speckle noise is often found in ultrasound images
[1]. It is defined by the following model. We let s(x) denote the actual image, and
f(x) the observed image. Then

f(@) = s(x) +n(0,0) - s(x), 3)
where 7(0, §) is uniformly distributed random noise of mean 0 and variance §. We
add speckle noise of increasing variance to the image S, as illustrated in Figure 4.
For a given noise variance §, we denote the noisy image Ss.

In Figure 5, we illustrate the deformation fields produced by the standard FFD
registration algorithm upon registering the noisy deformed images S; with the
original image I. Recall that the actual deformation is shown in Figure 3.

A visual comparison of the deformation fields presented in Figure 5 with the exact
deformation field in Figure 3 indicates that the deformation registration technique
fails to produce physically meaningful results for noise variance ¢ greater than 0.2.
To quantitatively evaluate the accuracy of the deformable registration algorithm for
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FIGURE 4. The noisy images Sy, for increasing values of §.

FIGURE 5. The deformation fields produced by the standard FFD
registration algorithm upon registering the noisy deformed images
Ss with the original image I, for increasing values of 4.

TABLE 1. The correlation coefficient p between the transformed
moving and fixed images after standard FFD registration for each
speckle noise variance 9.

[6]0 01 02 03 04
p 0.96 0.90 0.85 0.75 0.69

6 05 06 07 08 09
p 065 0.62 0.61 0.60 0.60

registration of the noisy images, we compute the correlation coefficients between
the transformed moving and fixed images after registration for each speckle noise
variance 6. In Table 1, we present the correlation coefficients p for each noise
variance d. For reference, we also include in the first line of Table 1 the correlation
coefficients between the images after registration when the deformed image contains
no noise. Recall that the maximum possible correlation coefficient is 1 and the
minimum possible correlation coefficient is 0.

The results presented in Figure 5 and Table 1 indicate that ordinary deformable
registration techniques fail to produce an accurate registration result when one of
the images to be registered contains significant levels of noise. As expected, the
level of failure increases as the speckle noise variance ¢ increases. For variances
greater than or equal to 0.2 the algorithm fails to produce any meaningful results.
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4. Multiscale registration algorithms.

4.1. The multiscale decomposition. The multiscale registration techniques to
be discussed in this paper are based on the multiscale image representation using
the hierarchical (BV, L?) decompositions of [18]. This multiscale decomposition will
provide a hierarchical expansion of an image that separates the essential features of
the image (such as large shapes and edges) from the fine scales of the image (such
as details and noise). The decomposition is hierarchical in the sense that it will
produce a series of expansions of the image that resolve increasingly finer scales, and
hence include increasing levels of detail. We will eventually apply the multiscale
decomposition algorithm to the problem of image registration in the presence of
noise, and will demonstrate the accuracy of the multiscale registration technique
for noisy images such as those considered in Section 3.

We will use the following mathematical spaces in the decomposition algorithm.
The space of functions of bounded variation, BV, is defined by:

BV:{f

1l = sup [A176+ 1) = £l < o0
h#£0
We will also use the Sobolev space W~ with norm given by:

T sup[ /@)g(x) dx],
g ||9HW1v1

where ||glwrs = [ Vgllza.
Define the J-functional J(f, A) as follows:

TN = inf AlelEs + llullav, (4)

where A > 0 is a scaling parameter that separates the L? and BV terms. This func-
tional J(f, \) was introduced in the context of image processing by Rudin, Osher,
and Fatemi [16]. Let [uy,v)] denote the minimizer of J(f,\). The BV compo-
nent, uy, captures the coarse features of the image f, while the L? component, vy,
captures the finer features of f such as noise. This model denoises images while
preserving edges, though it requires prior knowledge on the noise scaling A.

Tadmor, et al. proposed in [18] an alternative point of view in which the mini-
mization of J(f, \) is interpreted as a decomposition f = uy—+wvy, where u) extracts
the edges of f and vy, extracts the textures of f. This interpretation depends on the
scale )\, since texture at scale A\ consists of edges when viewed under a refined scale.
We refer to vy = f — u) as the residual of the decomposition. Upon decomposing
f =) + vy, we proceed to decompose vy as follows:

Uy = U2 t Vay,

where

[uax, vaa] = arginf J(vy, 2X).

u+v=vy
Thus we obtain a two-scale representation of f given by f = uy + ugy, where now
vax = f — (ux 4+ ugy) is the residual. Repeating this process results in the following
hierarchical multiscale decomposition of f. Starting with an initial scale A = Aq,
we obtain an initial decomposition of the image f:
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f=ug+wvo, [uo,vo]=arginf J(f, \o).
ut+v=f

We then refine this decomposition to obtain

vy = Ui + 01, (Wi, 0541] = arginf J(v;, A2 tY), j=0,1,...

utv=uvj

After k steps of this process, we have:

f=uw+tvg=up+ur+vi =uptu+us+ves=...=ug+uy+...+ui+vg, (5)

which is a multiscale image decomposition f ~ ug-+ui+...4+ug, with a residual vy.
As k increases, the uj, components resolve edges with increasing scales A\ = \g2F.

4.1.1. Implementation of the multiscale decomposition. As described in [18], the
initial scale A\g should capture the smallest oscillatory scale in f, given by

1 1

o < Wl < 5 (©)
However, in practice, we may not be able to determine the size of ||f]|y-1., SO we
determine the initial choice of A¢ experimentally. Following [18], for the applications
presented in this paper, we will use A\g = 0.01 and \; = X\¢27.

We follow the numerical algorithm of [18] for the construction of our hierarchical
decomposition. In each step, we use finite-difference discretization of the Euler-
Lagrange equations associated with the J(vj, Aj41) to obtain the next term, u;y1,
in the decomposition of the image f. Because of the singularity when |Vu,| = 0,
we replace J(f, ) by the regularized functional

J(f,N) = qurrgf_f{/\|v||2L2 —1—/9 €2+ |Vu|? dx dy}, (7)

and at each step, we find the minimizer u) of J¢. The Euler-Lagrange equation for

JE(f,N) is

1 . Vuy .
Uy — —div| ——==—=——== | =fin Q,
AT 9N V( /2 1 |VU,\|2> f

with the Neumann boundary conditions:

ou
50 =0 (8)
" lao
where 02 is the boundary of the domain 2 and n is the unit outward normal. We
k
thus obtain an expansion f ~ > u;, where the u; are constructed as approximate
§=0
solutions of the recursive relation given by the following elliptic PDE:

1 Vu, 1 Vu;
Ujp1 — —~——div S S . W [N ) (N . B (9)
201 Ve + |V ? 2 V€ + | Vu,|?
To numerically implement the method, we cover the domain 2 with a grid (z; :=
ih,y; := jh), and discretize the elliptic PDE of equation (9) as follows:.
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uij = fi; (10)
Lt Uit1,j — Ui B Wi j — Uio1,
2M0? | /€ + (D ypui )% + (Doyui 5)? D_yu;5)* + (Doyui-1,5)?
+ 1 Ui, 41 — Ui Ui — Uij—1
2)\h2 \/62 Domu2 ]) + (D+yui,j)2 DO‘/EUZ = 1)2 y’LLZ j
(11

where Dy, D_, and Dy denote the forward, backward, and centered divided dif-
ferences, respectively. To solve the discrete regularized Euler-Lagrange equations
(10), we use the Gauss-Siedel iterative method to obtain:

7L+1 _ f7 y (12)
1 j
+ 1 Uit~ uzlj _ u:l;rl — Uiy
2
2?1\ 4 (Daul )2+ (Doyuiy)? \J& + (D) + (Doyuly )2 |
o g wpowy
IVE

e

(Derqu)Q \/

(DOIUZJ 1)2 + (D y Ui, 3)2_

(13)

To satisfy the Neumann boundary conditions (8), we first reflect f outside ) by
adding grid lines on all sides of Q. As the initial condition, we set u} . = f; - We
iterate this numerical scheme for n = 0,1,... N until [|Ju™> —u™=" 1|| is less than
some preassigned value so that u; ;" is an accurate approximation of the fixed point
steady solution wuy.

Finally, we denote the final solution uy := {u;'3" }; ;. To obtain the hierarchical
multiscale decomposition, we reiterate this process, each time updating f and A in
the following way:

fnew

)\new

— fcurrent — Uy,
— 2Acurrem‘/~ (14)
That is, at each step, we apply the J(feurrent —ux, 22) minimization to the residual
feurrent — uy of the previous step. Taking A\; = X027, we obtain after k steps a
hierarchical multiscale decomposition f = uy, + ux, + ... + ux, + vy, where we
write uy;, = uj. We call the uj, j =1,2,... k the components of f, and the vy the
residuals. For ease of notation, given an image f, we let Ci(f) denote the k' scale

of the image f, k=1,...,m

(15)

k—1
= w(f)
=0

Thus Cx(A) will denote the k' scale of the image A, and Cx(B) will denote the
kth scale of image B.
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Coarsest Scale of
Ci(A) Image A
Ca(4)
Original Image A
(Fixed Image) e
[ )
L]
Finest Scale of
Cin(4)
Image A
Coarsest Scale of
Ci(B) Image B
Original Image B Co(B)
(Moving Image)
()
L]
L]
Finest Scale of
Cn(B) Image B

FIGURE 6. Decomposition of the fixed and moving images into a
hierarchical expansion of coarse and fine scales.

4.2. Multiscale registration algorithms. In this section, we present two mul-
tiscale image registration algorithms that are based on the hierarchical multiscale
decomposition of [18] reviewed in Section 4.1. For the general setup, consider two
images A (the fixed image) and B (the moving image), and suppose that we want
to register image B with image A. Suppose that one or both of the images con-
tains a significant amount of noise. If only one of the images is noisy, we assume
that it is image B. For both of the algorithms described in this section, we first
apply the multiscale decomposition to both images, and let m denote the number
of hierarchical steps used in the decomposition, as illustrated in Figure 6.

4.2.1. Algorithm I: Iterated single-node multiscale registration algorithm. In our
single-node multiscale registration algorithm, Algorithm I, we iteratively register
the k' scale Cy(B) of image B with the image A, for k = 1,...,m. That is, we
first register the first coarse scale C1(B) of the moving image with the fixed image
A. The output of this registration process is the set of deformation parameters
that represent the optimal deformation transformation between Cy(B) and A. We
then register the second scale Cy(B) of the moving image with the fixed image A,
using the output deformation parameters from the first registration as the starting
parameters for the second registration. We repeat this procedure until the last scale
(or desired stopping scale) is reached. That is, at each stage, we use the output
deformation parameters from the previous registration as the initial parameters for
the current registration. See Figure 7 for a schematic visualization of Algorithm I.

We refer to this algorithm as a one-node multiscale registration algorithm because
we use only the multiscale components of the moving image B. Since this algorithm
considers scales only of the noisy image, we expect that it will be particularly
successful when only one of the images to be registered is noisy.
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Moving Image Transformation Fixed Image

Scaelof
Image A

Scae2of

Image A
Scae3of
B Image A

\ scdedof

Image A

Scaemof
Image A

FIGURE 7. Schematic visualization of Algorithm I.

Moving Image Transformation Fixed Image
C1(B) - Ci(4)
&
C2(B) o _ Ca(A)
b2
Ca(B ,
3(B) o Cs(A)
@3
Cu(B) @3 _ Ca(A)
P4
Cm(B) Pm—1 Cm(A)
bm

FI1GURE 8. Schematic visualization of Algorithm II.

4.2.2. Algorithm II: Iterated multinode multiscale registration algorithm. In our
multinode multiscale registration algorithm, Algorithm II, we iteratively register
the k*™" scale of image B with the k'™ scale of image A, for k = 1,2,...m. See
Figure 8 for a schematic visualization of Algorithm II.

We refer to this algorithm as a multinode multiscale registration algorithm be-
cause in each of the m registrations prescribed by the algorithm, we consider both
the scales of the fixed image A and the scales of the moving image B. Since this
algorithm considers scales of both the fixed and moving images, we expect that it
will be particularly successful when both of the images to be registered are noisy.
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TABLE 2. The correlation coefficients between the transformed
moving and fixed images after each iteration of iterated single-
node multiscale registration (Algorithm I). The deformed image
has added noise of variance 0.6.

Iteration 1 2 3 4

P 0.82 0.86 0.90 0.92
Iteration 5 6 7 8
P 095 0.95 095 0.95

5. Results and discussion. In Section 3, we demonstrated that ordinary FFD
registration fails to produce an acceptable result when the moving image contains
a significant level of noise. In this section, we demonstrate that the multiscale
methods presented in Section 4.2 enable an accurate registration of images for
which ordinary deformable registration fails.

5.1. Registration of a noisy deformed image. Initially, we consider the case
in which only one of the images to be registered (in this case, the moving image)
is noisy. Consider again the original image I and the noisy deformed image So ¢,
and recall that the exact deformation transformation between the images is given
by the deformation field in Figure 3.

We register the noisy deformed image Sy.¢ with the original image I using Algo-
rithm I, the iterated single-node multiscale registration algorithm. We use m = 8
hierarchical steps in the multiscale decomposition of the noisy deformed image S ¢.
In Table 2, we compute the correlation coefficients between the transformed moving
and fixed images after iterated single-node multiscale registration, and in Figure 9,
we illustrate the deformation field produced by the final iteration.

FiGURE 9. The deformation field obtained upon registering the
noisy deformed image Sy ¢ with the original image using the iter-
ated single-node multiscale registration method (Algorithm I).

The results presented in Table 2 and Figure 9 demonstrate that the iterated
multi-scale registration algorithm is a significant improvement over ordinary de-
formable registration techniques.

5.1.1. Increasing the noise variance. Finally, we demonstrate that the iterated
single-node multiscale registration algorithm produces accurate results for noise
variances ¢ significantly greater than those at which ordinary deformable registra-
tion fails. In Figure 10, we illustrate the noisy deformed images S for very large
values of the noise variance ¢, and in Figure 11, we illustrate the deformation fields
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TABLE 3. The correlation coefficients between the transformed
moving and fixed images after iterated single-node multiscale reg-

istration (Algorithm I) for increasing values of the noise variance
J.

0 04 08 1
0.96 095 095 0.95
2 3 4 6
0.93 092 092 0.90

D> | >

computed using the single-node iterated multiscale registration algorithm (Algo-
rithm IIT) to register the noisy deformed images Ss with the original image I for
each ¢ illustrated in Figure 10. In Table 3, we illustrate the correlation coefficients
between the images after iterated single-node multiscale registration. These results
demonstrate that the iterated multiscale registration algorithm accurately registers
the noisy deformed image with the original image for noise variances that are signif-
icantly greater than those at which ordinary registration fails. Recall from Section
3 that ordinary deformable registration of a noisy deformed image with a non-noisy
fixed image fails for noise variances ¢ greater than 0.2. In Figure 11 and Table 3, we
demonstrate that the iterated multiscale registration algorithm produces accurate
results for noise variances ¢ as large as 6.

=0 6=0.4 6=0.8

FIGURE 10. The noisy deformed images S5 for increasing noise
variances 0.

5.2. Registration of a noisy deformed image with a noisy fixed image.
In this section, we consider the case in which both images to be registered contain
significant levels of noise. We add speckle noise of variance 0.6 to the original image
I, and denote this noisy image Iyg. Our goal is to register the noisy deformed
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FiGURE 11. The deformation fields obtained upon registering the
noisy deformed image Ss with the original image I using Algorithm
I for increasing noise variances 9.

image Sp.¢ with the noisy fixed image Iy¢. In Figure 12, we illustrate both of
the noisy images, as well as the deformation field produced upon registering the
noisy deformed image Sy ¢ with the noisy original image Iy ¢ using an ordinary FFD
registration technique.

Noisy Original Image Noisy Deformed Image

Deformation Field

-

FIGURE 12. The noisy midsagittal brain slice Iy g (shown on the
left), the noisy deformed image Sp.¢ (shown in the center), and the
deformation field (shown on the right) produced upon registering
So.¢ with Iy g using ordinary deformable registration techniques.

A visual comparison of the computed deformation field in Figure 12 with the exact
deformation field in Figure 3 indicates that ordinary deformable registration of the
noisy images fails. The correlation coefficient p between the images after ordinary
deformable registration is 0.64.

5.2.1. Multinode registration. Since ordinary deformable registration of the noisy
images fails, we register the images using our iterated multinode multiscale algo-
rithm (Algorithm IT). We use m = 8 hierarchical steps in the multiscale decomposi-
tion of the images. In Table 4, we compute the correlation coefficients between the
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TABLE 4. The correlation coefficients between the transformed
moving and fixed images after each iteration of iterated multi-node
multiscale registration (Algorithm III).

Iteration 1 2 3 4

p 0.93 0.93 094 0.94
Iteration 5 6 7 8
p 094 0.95 095 0.95

transformed moving and fixed images after each iteration of the iterated multi-node
multiscale algorithm, and in Figure 13, we illustrate the deformation field produced
by the final iteration.

FIGURE 13. The deformation field obtained upon registering the
noisy deformed image Sy ¢ with the noisy original image Iy ¢ using
the multinode iterated multiscale registration method (Algorithm
III).

The results presented in Table 4 and Figure 13 demonstrate that the iterated
multiscale registration algorithm is a significant improvement over ordinary FFD
registration techniques.

5.2.2. Increasing the noise variance. Finally, we demonstrate as in Section 5.1.1
that the iterated multinode multiscale registration algorithm produces accurate re-
sults when both of the images contain speckle noise of variance significantly greater
than the level at which ordinary deformable registration fails. In Figure 15, we
illustrate the deformation fields computed using the iterated multiscale registration
algorithm to register the noisy deformed image S5 with the noisy original image
Is for increasing noise variances ¢, and in Table 5, we present the correlation coef-
ficients between the noisy images after iterated multinode multiscale registration.
These results demonstrate that the iterated multiscale registration algorithm accu-
rately registers the noisy deformed image with the noisy original image for noise
variances significantly greater than those at which ordinary techniques fail; recall
that ordinary deformable registration failed when only one of the images to be reg-
istered contain noise of variance 0.2. In Figure 14, we illustrate the noisy original
and deformed images Iy and So. These images contain speckle noise with variance
6 = 2. As demonstrated by the deformation field in Figure 15, the iterated multi-
node multiscale registration algorithm (Algorithm II) accurately registers these very
noisy images.
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Noisy Original Image (6=2)

Noisy Deformed Image (6=2)

FI1GURE 14. The noisy original and deformed images I and Ss.
5=0.4 5=0.8
—
=2

®

FI1GURE 15. The deformation fields obtained upon registering the
noisy deformed image S5 with the noisy original image I5 using
the multi-node iterated multiscale algorithm (Algorithm IT) for in-
creasing noise variances ¢.

5=0
=1

ok

6. Conclusions. While there are many existing deformable registration techniques,
common approaches are shown to fail when one or more of the images to be regis-
tered contains even moderate levels of noise. We have presented deformable image
registration techniques based on the hierarchical multiscale image decomposition
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TABLE 5. The correlation coefficients between the transformed
moving and fixed images after iterated multi-node multiscale reg-

istration (Algorithm II) for increasing values of the noise variance
J.

0 0 04 08 1 1.5 2
p 096 095 094 093 0.93 0.90

of [18] that are particularly effective for registration of noisy images. This pa-
per extends the multiscale registration techniques of [13], in which we presented
algorithms for rigid image registration in the presence of noise. The multiscale de-
composition of an image results in a hierarchical representation that separates the
coarse and fine scales of the image. We presented two multiscale registration algo-
rithms based on this decomposition. In the first, we follow an iterated single-node
multiscale registration strategy in which we register the scales of the moving image
with the fixed image, at each stage using the deformation parameters produced by
the previous scale registration as the starting point for the current scale registra-
tion. In the second, we use a multi-node multiscale registration method in which we
register the scales of the moving image with the scales of the fixed image, at each
stage using the deformation parameters produced by the previous scale registration
as the starting point for the current scale registration. Using images in which the
precise deformation between the fixed and moving images is known, we have shown
that the multiscale registration algorithms are indeed accurate for levels of noise
much higher than the noise levels at which ordinary deformable registration tech-
niques fail. Although we have presented our algorithm in a way that is, in principle,
independent of the specific multiscale decomposition used for the expansion of the
images to be registered, we have found that the hierarchical (BV, L?) multiscale
decomposition of [18] contains unique features that are not necessarily evident in
other decomposition techniques. For example, information about small geometrical
details is contained in both the coarse and fine scales of the image decomposition.
For further details, we refer to [18]. Although the relative merits of different scale
decompositions when applied to image registration is still open to debate and left for
further research, we believe that the hierarchical (BV, L?) decomposition is partic-
ularly well-suited for image registration problems. Another area for future research
is combination of our multiscale registration algorithms with multi-level B-splines
registration, as presented in [17]. Finally, we would like to emphasize that using the
multiscale decomposition is independent of the registration method used and of the
noise model. The multiscale decomposition can be used in conjunction with any
registration method and can be applied to registration of images containing any
type of noise, without any assumption about the particular type of noise contained
in the images. In the future, we would like to work on studying convergence of
registration techniques based on the hierarchical multiscale image decomposition,
as well as applications of multiscale registration to other (non-medical) problems
in image registration.
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